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Abstract

This paper aims to combine the best
of Bayesian Knowledge Tracing (BKT) and
Deep Learning, training a model on synthe-
sized BKT data then fine-tuning it based
on real data using K-Split cross-validation
to evaluate and predict a student’s mas-
tery through next-question prediction. The
main objective of this work is to teach deep
learning models the complex and often non-
linear learning path students take on the
road to mastery.

1 Introduction

Traditional learning aims to teach a student a topic
in a given amount of time. At the end of the al-
lotted time, the student is evaluated through a test
and advanced, regardless of performance. Educa-
tional psychologist Benjamin Bloom popularized an
innovated way of evaluating students; where instead
the student is advanced based on a mastery score,
this mastery score is compared to a percentage,
which in Blooms study the passing criterion was
80-90%. Mastery learning is not without its advan-
tages. Students who used it saw a 1.00 improve-
ment. Those who used one-on-one tutoring services
saw this number rise to 2.00 It’s difficult to esti-
mate a mastery score, as test results can certainly
be deceiving. How can you know the student didn’t
guess on that question and got lucky, Or knew that
question but simply slipped up? In short, tests are
too simple a metric, and it’s far too difficult to dis-
cover a mastery score through simple arithmetic or
logic. In an attempt to simplify this problem, the
standard of knowledge tracing, Bayesian Knowledge
Tracing (BKT), was created. Using Bayes theo-
rem to predict the students’ mastery score, taking
into account slip and guess probability. BKT is the
standard to solving knowledge tracing problems be-
cause of its efficacy and lightweight nature. BKT
in Python applications like PyBKT[1] are both ac-
cessible and easy, though not necessarily accurate.

BKTs, inability to adapt to serve different students
and simplicity in its parameters are serious con-
cerns for accuracy, especially concerning Edtech.
The idea of using Deep Learning to solve this prob-
lem because of its ability to adapt is present and
common in the educational data mining commu-
nity. This paper aims to combine the best of BKT
and Deep Learning, training a model on synthesized
BKT data then adjusting and fine-tuning it based
on a real dataset using K-Split cross validation to
eventually evaluate and predict a student’s mastery
through next question prediction.

2 Methods

2.1 Generating Data

Data is generated using randomly sampled Bayesian
parameters through realistic ranges seen in 5.1.
This data is randomized for each synthetic student,
which the student then answers 25 questions either
correctly or incorrectly. The true underlying knowl-
edge level of each student is recorded, as well as data
left out for validation & final test. Usable data gen-
erated never exceeds the splits seen in 5.5.

2.2 Models

Three models are trained on the same data: LSTM,
MLP, and a self-attention model.

2.3 MLP

MLP uses a standard feedforward architecture with
3 hidden layers with decreasing size(128,64,32).
Each hidden layer includes batch normalization and
ReLU. Dropout rates are kept at 0.3 to avoid over-
fitting.

h; = Dropout(ReLU(BN(W;x + b1)))

Hidden layer transformation with batch normaliza-
tion, ReLLU activation, and dropout regularization.

h; = Dropout(ReLU(BN(W;h;_1+b;))) fori € {2,3}



Hidden layers 2,3 with decreasing dimensions

9 = o(Wihz + by)

Where x € R7 is the input feature vector, h; is
the i-th hidden layer, and § € (0, 1) is the predicted
probability of a correct response, often defined in
BKT as P(L)

24 LSTM

The LSTM architecture is a sequential history of
the students’ responses using 2 layers of 128 each.

ht,Ct = LSTM(Xt,ht,thfl) (1)

H,; and C; are hidden cell states at time t. The
input sequence uses a sliding window length of
5(meaning the model considers the 5 most recent
responses), with the aim to capture the most recent
responses. Hrp, which is the final hidden state, is
then passed through a two-layer feedforward net-
work.

:lj = U(WQ . ReLU(WlhT + bl) + bg) (2)

2.5 Self-Attention

The self-attention head uses a multi-head using 4
total heads with a hidden dimension of 64.

Input features are first projected to the hidden di-
mension

H = Linear(X) where X € R™*7 H ¢ RT*%4
®3)

Self-attention is then defined as
T

Attention(Q, K, V') = softmax (?/IC% ) Vo 4)

Where Learned query is Q@ = HW,, Key is K =
HWy, and value projections V = HWy,, and dy =
64/4 = 16 hidden dimension/number of heads. The
attention outputs are then averaged across the se-
quence and then passed through a feedforward net-
work for a binary prediction.

2.6 Training Configuration

All models are trained using the Adam optimizer
with the following parameters

e Learning rate: 1 x 1073 with no decay

e Weight decay: 1 x 1075 (L2 regularization)
e Batch size: 256

e Maximum epochs: 100

e Loss function: Binary cross-entropy loss.
Binary cross-entropy is then defined in the equa-

tion

N
L= _% Z [yi log(gz) + (1 — yz) IOg(l - gz)] (5)

Where Y; € (0,1) is the ground truth label and
Y; = o(2;) is the predicted probability.

2.7 Regularization and

stopping
Overfitting was a large concern in designing this,

especially given the synthetic dataset. 3 regulariza-
tion strategies are employed.

early-

e Dropout: Applied after each hidden layer
with a rate=0.3

o L2 weight decay: A = 11075 added to loss

e Early stopping: Training terminated when
validation loss fails to improve for 10 consec-
utive epochs.

Model checkpoints are also saved as a PyTorch file
at each epoch where validation AUC achieved a new
maximum. The final epoch is not used as the final
model of the training set; the model with the high-
est validation AUC loss is.

2.8 7 Features

e Current response
o Cumulative correct count
e Historical accuracy

e Previous response

Streak length

Recent accuracy

Question position

2.9 Evaluating the models

5 Evaluation metrics are used to judge the models
based on their performance in the testing dataset.

Models were evaluated using five metrics com-
puted on the held-out test set:

A B TP +TN
Y = TP Y TNy FP+ FN
Accuracy Score
Precisi TP
recision = —————
TP+ FP
Precision Score
TP
l= —~——
Reca TP L FN

Recall Score

F1-Score — 2. Precision - Recall

Precision + Recall



F1-Score
1
ROC-AUC — / TPR(t) d[FPR(1)]
0

ROC-AUC Score

Where TP, TN, FP, and FN denote True posi-
tives, True negatives, false positives, and false nega-
tives in that order. Predictions are converted to bi-
nary correct/incorrect using a probability threshold
of 0.5. In summary, Models are evaluated based on
their next-question prediction accuracy, then eval-
uated on multiple statistics: Precision, Recall, F1
and ROC-AUC.

3 Bayesian Knowledge Tracing

3.1 Calculating Mastery

Bayesian Knowledge tracing is described as a Hid-
den Markov Model, where the machine learns based
on Y and outputs Y because X cannot be observed.
In context, X is the students’ learning of the do-
main; because the model cannot directly observe,
we base the P(L) on probability through BKT. BKT
begins at time=0 with (L) = prior for subsequent
processes (Ly) = prior is the updated probability
from the previous operation. When an observation
is made, defined as observation Op,the algorithm
updates the master probability to a binary num-
ber, either 0 if it was incorrect or 1 if it was correct.
If Or = 1 or the observation by the model was that
the student got the question correct, that observa-
tion is applied to the probability using this formula.
P(L;)-(1—P(S

(P(LilO: = 1) = p i BT AT P@)
Put simply, this is the probability that the student
knows the skill that they got correct. Because learn-
ing is not linear, and students can guess in a domain
they have never studied, and still get some correct
through guessing. BKT takes this into account with
P(G) a constant in the model. Slips are also ac-
counted for through P(S), another constant which
takes into account that the student knows the skill,
but simply slipped and got it incorrect.[1]

P(L.)-P(S
P(L|Oy = 0) = P(Lt)~P(S)+((1—)P((Lt)))'(1—P(G))

If the observation is that the student got the ques-
tion wrong or Or = 0, we apply this formula, which
is nearly identical to the correct formula, with the
exception 1— is applied to P(G) in the denomi-
nator instead of P(S) in the numerator. In the
Or = 0 formula, 1 is also subtracted from P(S) in
the denominator.[1]

Following the Calculation of the posterior prob-
ability, the student’s knowledge is updated using

P(Lpi1) = P(Ly | O) + (1 — P(L, | On))T

3.2 Parameters of BKT
P(Lt)

This is the latent probability that the student knows
the skill given T for time. This is updated fre-
quently based on the model’s evaluations. This is
a monotonic variable, meaning according to BKT,
the students’ knowledge can only stay the same or
increase.
P(T)

This constant defines the learning rate, the proba-
bility that the student learns the domain in-between
questions. This is the largest weakness of BKT, as
it assumes 3 things: 1. Learning is purely binary 2.
Learning is also Monotonic and 3. Learning rate is
consistent across all time, students, and domains.

P(G)

This constant defines the guess probability. Which
defines the probability that the student does not
know the domain but answered the question cor-
rectly. This is commonly set at 25%. A sometimes
unrealistic factor that can affect the model’s confi-
dence.
P(9)

This constant defines the probability that the stu-
dent knows the domain but simply slipped up and
selected the wrong answer. This is normally around
15%. This value not only limits the confidence of
the model at 85% but in theory it prevents high-
confidence mastery estimates. [1]

4 The Need For Deep Learning

4.1 Educational Accuracy

The primary concern for switching to deep learn-
ing knowledge tracing models is the improvement
in many statistics, such as the AUC metric (area
under curve), where a noticeable improvement is
seen[11]. Learning is not a linear path and differs
for everyone; Bayesian captures a very limited as-
pect of tracking it, and the inability for the machine
to recognize new patterns in a dataset but simply
remain monotonic is one of the biggest hindering
factors of these models. The parameters, as dis-
cussed in 2.2, are the biggest show of this.

5 Synthetic Data with BKT

5.1 Parameters

In order to generate proper synthetic data, param-
eters are the most significant in this experiment.
Using what was defined as default ranges for P(Lg)
, P(T), P(S), and P(G) per student sampling was
used, assigning random parameters from the realis-
tic ranges listed below.



e P(Ly): 10%-60%
P(T): 5%-25%
o P(S): 5%-20%

o P(G): 15%-35%

Per student sequence, 25 questions are generated
with their individually assigned parameters. The
student then based on the simulation BKT model-
Which is simply a reverse BKT, where given initial
parameters, the model generates observed binary
responses. This paper presents results using vari-
ous dataset sizes, with the largest comprising 10,000
students. 10,000 - 24 leading to about 240,000 train-
ing samples. Including later discussed validation
and test data, this brings the total to 336,000 sam-
ples or 14,000 students. It’s important to note that
since the task the models are being evaluated on is
next-response prediction (predicting question n + 1
based on responses through question n. Each 25-
question set yields only 24 prediction points, as
there is no question 26 to predict.

5.2 Validation Data

Validation data, which consists of 48,000 samples or
2,000 students, is held out during training to detect
any overfitting and for early stopping decisions in
training.

5.3 Ground Truth

The ground truth is stored in all 3 points of data
(Training, Validation, Test). Unavailable in regular
educational training data, the ground truth allows
verification that the model is training off learning
rather than patterns in the students’ responses.

5.4 Test Data

A small portion of the data is exclusively generated
for testing the model. This is a small set, only 15%
of the training set size, but is plenty as is. This data
is generated at the same stage as the rest, so there
are no repetitions, and the data is truly unique. The
data goes through an identical process as training
and validation data.

5.5 Max Data Splits

e Training: 10,000 students (240,000 samples,
71%)

e Validation: 2,000 students (48,000 samples,
14.79%)

o Test:
14.79%)

e Total:
100%)

2,000 students (48,000 samples,

14,000 students (336,000 samples,

6 Models Used

6.1 Multilayer perceptron

Compared to LSTMs, the Multilayer perceptron is
much simpler; it differs because it doesn’t have a
memory of specific time sequences as an LSTM
does. It takes its inputs multiplies them by weights,
adds bias, and passes them through a function

Hidden Layer
Input Layer
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Figure 1: Inputs are passed through a hidden layer
to calculate probability|[7]

Output Layer

O
o

Input 2

The above figure [7] is what’s commonly seen
as the conventional neural network. This architec-
ture works exceptionally well if what you’re look-
ing for is training speed and an easy-to-understand
model. MLPs are frequently called a feedforward
network because the data like a river travels only in
one direction; the simple model has no ability to re-
call previous interactive or measure time unlike the
other models, MLPs simply processes all the data
at once and applies weights to get an output.

6.2 Long Short Term Memory

At first glance, recurrent neural networks (RNNs)
appear to be extremely appealing for multiple prob-
lems and use cases, primarily because they have the
ability to connect past information to the present.
This isn’t always true, though. In short, as the gap
between the past and present context for the model,
it becomes difficult for the model to correctly iden-
tify the answer.

? (?D @ @ @
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Figure 2: A standard RNN with a large gap between
context [§]

Long Short Term Memory or LSTMs, as called
in this paper, have a unique solution to track time.
The architecture consists of 3 gates, a forget gate,
which, simply put, disposes of information that is
not relevant to the output. An input gate decides



what new information to store that may be rele-
vant to the output. The final gate is responsible for
the Output, based on the model’s current memory.
This model works excellently for capturing the tem-
poral dependencies of the problem. In context, the
3 gates work together to discard unnecessary data,
input the most recent questions and the students’
results, and finally decide what to output given its
current memory.
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Figure 3: A chain of LSTMs working [8]

6.3 Self-Attention

Self-attention models are extremely unique because
they weigh the importance of past responses when
making predictions. In context, this means that the
model focuses more on recent questions and simply
ignores less relevant questions. The model learns
which input matters the most for the desired out-
put. [13]

CNN

Self-attention

Figure 4: How Self-Attention models differ from
CNNs or RNNs|15]

The Self-Attention architecture allows each to-
ken (shown here as X; through X5) to look at all
other tokens and evaluate the most relevant. This
solves the earlier issue discussed in 6.2 of past and
present. This approach makes it simple to model
long-range relationships.

6.4 Control BKT

The control BKT uses non-adaptive constants as
follows.

o P(Ly) = 0.3
e P(T) =0.1
e P(G) = 0.25
e P(S) =01

The control model uses fixed parameters that, un-
like the other models, can not change capture skill
specific differences or adapt its parameters during
training or evaluation. This is a limitation spoken
more on in section 9 that may produce relatively
lower results. This is intentional and is used as a
conservative comparison to the other models.

7 Results

7.1 Architecture Comparison

After training, we compared the architecture of
LSTM , MLP & Attention as-well as normal BKT
as a control. Using the metrics in 2.9.

Table 1: Model Performance Comparison with BKT
Baseline

Model Acc. Prec. Recall F1 AUC Prec. Gain
BKT 0.749 0.843 0.825 0.834 0.661 -
MLP 0.807 0.837 0.930 0.881 0.748 +7.8%
LSTM 0.825 0.850 0.951 0.898 0.703 +10.3%
ATTENTION 0.825 0.848 0.954 0.898 0.702 4+10.2%

All 3 deep learning models that were trained on

our synthesized data beat BKT, LSTM and atten-
tion stand out with the highest accuracy of 82.5%.
Both models outperformed BKT with a significant
10% gain.
Though the models were trained on BKT data -
they were still able to outperform BKT. This is
most likely because the deep learning models were
able to generalize parameters to approximate the
student’s learning progress. The BKT model is
forced to use these linear assumptions to track
learning, whilst the deep learning models can gen-
eralize and vary. The LSTM and Attention model
had a significant advantage in accuracy over MLP,
this is attributed due to the architecture differences.
MLP has a lack of recurrence, meaning it has no
way to carry information over from ¢ — 1 to t. The
MLP maps X — Y directly, whilst LSTMs models
and Attention models solve this by using a hidden
state for the LSTM and weighted dependencies in
the attention models. In simple terms, the MLP
takes the data all at once whilst the LSTM and
Attention models take the data sequentially.



ROC Curve Comparison

True Positive Rate

—— Baseline BKT (AUC = 0.662)
—— MLP (AUC = 0.747)

—— LSTM (AUC = 0.703)

ATTENTION (AUC =0.702)
=== Random Classifier

0.0

0.0 02 04 0.6 08 1.0
False Positive Rate

Figure 5: Architecture Comparison with ROC-AUC

However, it only gets more interesting from here,
the AUC score was highest in the MLP, which has
the lowest accuracy of the three. Both the LSTM
and attention models have a higher accuracy in
next question prediction however because of their
sequential architecture the confidence shoots up,
the model might notice several questions correct
in a row and have a high confidence the student
will continue this trend. When this ultimately fails
with a high confidence level, the model’s AUC score
drops. The MLP doesn’t see this trend as it takes
the data all at once instead of sequentially as previ-
ously mentioned. In this case, the AUC score rep-
resents a difference in architecture when presented
random slips. The MLPs higher AUC doesn’t make
it a more reliable model, it shows that the models
blindness prevents the model from being overconfi-
dent.

ATTENTION Confidence

LSTM Confidence

Figure 6: Confidence of LSTM(left) and Atten-
tion(right)

Baseline BKT Confidence

MLP Confidence

Figure 7: Confidence of BKT (left) and MLP(right)

The architectural difference is clear in these con-
fidence graphs, the LSTM and Attention models
cluster at the upper ranges around 0.9-1.0. The
dense presence of incorrect answers contribute to
the claim that these models extrapolate trends no-
ticed in students success / non-success. These
trends are reinforced and are more significant to
the sequential models. The MLPs confidence is no-
ticeably more distributed across the confidence, this
indicates a more cautious approach as the MLP re-
lies solely on the statistical average. Though being
cautious doesn’t mean being right.

Precision-Recall Curves

—— Baseline BKT (AP=0.830)

=== MLP (AP=0.879)

—— LSTM (AP=0.886)
ATTENTION (AP=0.885)

o

Precision

0.0
00

Recall

Figure 8: A precision recall curve of the 4 models

Figure 8 reveals BKTs conservative model, only
being accurate with low recall, though it’s more ac-
curate it leaves out too many false negative. Simply
put BKT given a pool of data is very accurate to
the data it does identify, but it doesn’t identify very
much data. The 3 deep learning models are more
accurate given higher recall. Beating out BKT in
this graph as well. The MLP had the worst accu-
racy given a high recall, whilst LSTM and attention
were nearly identical with a 0.001 difference.



Calibration Curves (Reliability Diagram)
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Figure 9: Calibration Curve with all 4 models

Another great figure to show the difference be-
tween the 3 deep learning models and BKT. BKT
tends to underestimate even though students suc-
ceed, BKT’s fixed parameters discussed in 3.2 limit
an accurate representation. MLP , LSTM & Atten-
tion are extremely reliable on the test data. Even
though this is BKT data the models they were
trained because it was a dynamic range not just
a constant set the models are able to stay flexible
and adapt for an accurate probability.

7.2 Real Data with ASSISTments

All 3 models were then evaluated on the AS-
SISTments dataset from 2009-2010, a popular ed-
ucational data mining dataset for evaluating KT
models. The dataset contains 4,108 students and
521,317 samples. Using the same standard of a 5-
fold cross validation

Model Acc. Prec. Recall F1 AUC Prec. Gain
BKT 0.678  0.681 0.993  0.808 0.562

MLP 0.762  0.832 0.815  0.823 0.819 +12.4%
LSTM 0.762  0.771 0.928  0.842 0.789 +12.5%
ATTENTION 0.717 0.823 0.745  0.782 0.786 +5.7%

Table 2: Model Performance Comparison (Cross-
Validation).

The main target of the real data benchmark was
to see a significant increase in both AUC and F1
scores, which was accomplished. The MLP model
achieved a 47.1% increase in AUC relative to the
control BKT model. Across the board, significant
increases were seen in all but one metric, recall. The
BKT model held the highest recall of 0.993 which
aligns perfectly with the idea that the model is often
correct when predicting a correct answer. However,

BKT exhibits the lowest precision at 0.681 mean-
ing the model has a poor ability to discriminate
between the correct and incorrect answers.

Overall result from the data table show that the
simple feedforward architecture shown in the MLP
yield the highest metrics across the board for the 3
neural networks. An interesting development as in
7.1 the MLP yielded the worst scores. This suggests
that MLP KT models are able to better generalize
on real noisy data. Whilst the LSTM and attention
models can recognize the patterns in the synthetic
data, MLPs simple architecture is marginally bet-
ter.

8 Future Work

A future goal of this work is to add multi-skill data
generation. Creating 15-45 independent skills for
each student, with 200 samples per skill, per stu-
dent. Generating BKT probabilities for each skill
with the hopes of refining the model to work with
noisier patterns and with the need for less fine-
tuning.

A gradio web-app was also part of this work, a
path towards making knowledge tracing and mas-
tery learning accessible to teachers and tutors. In
practice this works exceptionally well by simply
running a python file a full web app can be accessed
locally and from any other computer even on other
networks.

9 Limitations

This work in its entirety was completed on
limited hardware, specifically an Apple Mac-
Book Air with M2 Apple Silicon chip boasting
around 3.6 TFLOPS. Data generation, training &
use/evaluation is all possible on everyday laptops.
Because of this fact, the numbers posted in this pa-
per may not represent the absolute best metrics of
this architecture.

As mentioned in future work, this work only fo-
cuses on single-skill data generation. For subjects
which focus on multiple skills and might provide
more noise for a model to identify patterns, like the
ASSISTments dataset this may be a stronger use of
synthetic data. This is an easily added component
to add to synthetic data generation, which will be
included in future work.

These models also only evaluate next-question
prediction, This paper does not look at long-term
mastery, which is an important factor for educators
reviewing the aspects of mastery learning.

Mentioned in 6.4, The control BKT is not a



state-of-the-art model and is a simple, conservative
representation of the vanilla theory of knowledge
tracing. In practice, educational technology com-
panies that employ intelligent tutoring systems and
use BKT, use parameter estimations to change the
four parameters mentioned in 3.2 based on student
data.

The last noted discrimination was the baseline,
this paper only compared standard BKT to the
MLP , LSTM , Attention models which had been
exposed to synthetic Bayesian data.There was no
control neural network that was just fine-tuned on
the evaluation data and not exposed to synthetic
data.

10 Conclusion

This paper proved that using synthetic Bayesian
data to pre-train a deep learning model is more
effective than using standard Bayesian Knowledge
Tracing regardless of architecture. This data is able
to refine the principles and patterns of non-linear
learning. Even models trained on single skill syn-
thetic data can still accomplish great results on real
data relative to the standard BKT. The most im-
portant metric seen though not the greatest increase
was AUC score where a 26.5% increase was seen
simply by pre-training and using unique architec-
ture. This approach is both extremely accessible
and lightweight with the capability to complete an
entire workflow on limited hardware.
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A ASSISTments Full Table

Model Acc. Prec. Recall F1 AUC Gain
BKT 0.678 0.681 0.993 0.808 0.562 -

MLP 0.762 4= 0.023  0.832 4+ 0.021  0.815 £ 0.027 0.823 £ 0.021 0.819 £ 0.024 +12.4%
LSTM 0.762 & 0.019 0.771 &£ 0.021 0.928 4+ 0.016 0.842 4+ 0.013 0.789 4+ 0.025 +12.5%
ATTENTION 0.717 £+ 0.024 0.823 £+ 0.014 0.745 £+ 0.038 0.782 £+ 0.025 0.786 £+ 0.024 +5.7%

Table 3: 5 Fold CV for all models on the ASSIST-
ments dataset, with standard deviations.
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